BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20220313T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20221106T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:682e211619874 DTSTART;TZID=America/Toronto:20221209T120000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20221209T120000 URL:/combinatorics-and-optimization/events/combinatoria l-optimization-reading-group-david-aleman-1 SUMMARY:Combinatorial Optimization Reading Group - David Aleman CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: Approximation algorithm for stochastic k-TS P\n\nSpeaker:\n David Aleman\n\nAffiliation:\n University of À¶Ý®ÊÓÆµ\n\nL ocation:\n MC 6029 or contact Rian Neogi for Zoom link\n\nABSTRACT: The input of the deterministic k-TSP problem consists of a\nmetric complete g raph with root p in which the nodes are assigned a\nfixed non-negative rew ard. The objective is to construct a p-rooted\npath of minimum length that collects total reward at least k. In this\ntalk we will explore a stochas tic variant of this problem in which the\nrewards assigned to the nodes ar e independent random variables\, and\nthe objective is to derive a policy that minimizes the expected length\nof a p-rooted path that collects total reward at least k. We will\ndiscuss approximation algorithms for this pro blem proposed in a paper\nby Ene\, Nagarajan and Saket\, and a paper by Ji ang\, Li\, Liu and Singla.\n DTSTAMP:20250521T185310Z END:VEVENT END:VCALENDAR