BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20220313T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20221106T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:68313d2e34982 DTSTART;TZID=America/Toronto:20221121T180000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20221121T180000 URL:/combinatorics-and-optimization/events/algebraic-gr aph-theory-daniel-horsley SUMMARY:Algebraic Graph Theory - Daniel Horsley CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: Exact Zarankiewicz numbers through linear h ypergraphs\n\nSpeaker:\n Daniel Horsley \n\nAffiliation:\n Monash Universi ty\n\nLocation:\n Contact Sabrina Lato for Zoom link\n\nABSTRACT: The \\e mph{Zarankiewicz number} $Z_{2\,2}(m\,n)$ is usually\ndefined as the maxim um number of edges in a bipartite graph with parts\nof sizes $m$ and $n$ t hat has no $K_{2\,2}$ subgraph. An equivalent\ndefinition is that $Z_{2\,2 }(m\,n)$ is the greatest total degree of a\nlinear hypergraph with $m$ ver tices and $n$ edges. A hypergraph is\n\\emph{linear} if each pair of verti ces appear together in at most one\nedge. The equivalence of the two defin itions can be seen by\nconsidering the bipartite incidence graph of the li near hypergraph.\n DTSTAMP:20250524T032950Z END:VEVENT END:VCALENDAR