BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20220313T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20211107T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:682e81913605d DTSTART;TZID=America/Toronto:20221014T153000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20221014T153000 URL:/combinatorics-and-optimization/events/tutte-colloq uium-jonathan-leake SUMMARY:Tutte Colloquium - Jonathan Leake CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: Approximate Counting via Lorentzian Polynomi als and Entropy\nOptimization\n\nSpeaker:\n Jonathan Leake\n\nAffiliation: \n University of À¶Ý®ÊÓÆµ\n\nLocation:\n MC 5501 or contact Melissa Cambri dge for Zoom link\n\nABSTRACT: Over the past 20 years\, Lorentzian and rea l stable\npolynomials have been used to derive a number of combinatorial\n theorems\, from log-concavity statements to counting and volume bounds.\nO ne significant thread of this research lies in the utilization of\nentropy optimization methods to approximately count certain\ncombinatorial object s\, such as the matchings of a bipartite graph\, the\nintersection of the sets of bases of two matroids\, and the integer\npoints of various polytop es in general. In this talk\, we will discuss\nvarious results one can ach ieve using such methods.\n DTSTAMP:20250522T014449Z END:VEVENT END:VCALENDAR