BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20220313T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20211107T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:68315caaab682 DTSTART;TZID=America/Toronto:20221006T130000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20221006T130000 URL:/combinatorics-and-optimization/events/algebraic-co mbinatorics-jean-philippe-labbe SUMMARY:Algebraic Combinatorics - Jean-Philippe Labbé CLASS:PUBLIC DESCRIPTION:Summary \n\nTitle: Lineup polytopes and applications in quantum physics\n\nSpeaker:\n Jean-Philippe Labbé\n\nAffiliation:\n Université du Québec\n\nLocation:\n MC 5479 contact Olya Mandelshtam for Zoom link\n \nAbstract:  To put it simply\, Pauli's exclusion principle is the\nreaso n why we can't walk through walls without getting hurt. Pauli won\nthe Nob el Prize in Physics in 1945 for the formulation of this\nprinciple. A few years later\, this principle received a geometrical\nformulation that is s till overlooked today. This formulation uses the\neigenvalues of certain m atrices (which represent a system of\nelementary particles\, for example e lectrons). These eigenvalues form a\nsymmetric geometric object obtained b y cutting a hypercube: it is a\nhypersimplex.\n DTSTAMP:20250524T054410Z END:VEVENT END:VCALENDAR