BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20220313T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20211107T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:68cd1963e4d0c DTSTART;TZID=America/Toronto:20220916T153000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20220916T153000 URL:/combinatorics-and-optimization/events/tutte-colloq uium-lap-chi-lau-0 SUMMARY:Tutte Colloquium - Lap Chi Lau CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: Cheeger Inequalities for Vertex Expansion an d Reweighted\nEigenvalues\n\nSpeaker:\n Lap Chi Lau\n\nAffiliation:\n Univ ersity of À¶Ý®ÊÓÆµ\n\nLocation:\n MC 5501\n\nABSTRACT: \n\nThe classical C heeger's inequality relates the edge conductance $\\phi$\nof a graph and t he second smallest eigenvalue $\\lambda_2$ of the\nLaplacian matrix. Recen tly\, Olesker-Taylor and Zanetti discovered a\nCheeger-type inequality $\\ psi^2 / \\log |V| \\lesssim \\lambda_2^*\n\\lesssim \\psi$ connecting the vertex expansion $\\psi$ of a graph\n$G=(V\,E)$ and the maximum reweighted second smallest eigenvalue\n$\\lambda_2^*$ of the Laplacian matrix. In th is work\, we first improve\ntheir result to $\\psi^2 / \\log d \\lesssim \ \lambda_2^* \\lesssim \\psi$\nwhere $d$ is the maximum degree in $G$\, whi ch is optimal assuming the\nsmall-set expansion conjecture. Also\, the imp roved result holds for\nweighted vertex expansion\, answering an open ques tion by\nOlesker-Taylor and Zanetti. \n DTSTAMP:20250919T085043Z END:VEVENT END:VCALENDAR