BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20220313T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20211107T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:68319c23cbce6 DTSTART;TZID=America/Toronto:20220912T200000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20220912T200000 URL:/combinatorics-and-optimization/events/algebraic-gr aph-theory-seminar-qianqian-yang SUMMARY:Algebraic Graph Theory Seminar - Qianqian Yang CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: On sesqui-regular graphs with fixed smallest eigenvalue \n\nSpeaker:\n Qianqian Yang\n\nAffiliation:\n Shanghai Univer sity\n\nLocation:\n Contact Sabrina Lato for Zoom link\n\nABSTRACT: Let λ ≥ 2 be an integer. For strongly regular graphs with\nparameters (v\, k\ , a\, c) and fixed smallest eigenvalue −λ\, Neumaier\ngave two bounds o n c by using algebraic property of strongly regular\ngraphs. Subsequently\ , we studied a new class of regular graphs called\nsesqui-regular graphs\, which contains strongly regular graphs as a\nsubclass\, and proved that f or a given sesqui-regular graph with\nparameters (v\, k\, c) and smallest eigenvalue −λ\, if k is very\nlarge\, then either c ≤ λ² (λ − 1) or v − k − 1 ≤\n(λ−1)²/4 + 1. This is joint work with Jack Kool en\, Brhane\nGebremichel and Jae Young Yang\n DTSTAMP:20250524T101459Z END:VEVENT END:VCALENDAR