BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20210314T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20211107T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:6832083fbb62b DTSTART;TZID=America/Toronto:20220121T153000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20220121T153000 URL:/combinatorics-and-optimization/events/tutte-colloq uium-manuel-kauers SUMMARY:Tutte Colloquium - Manuel Kauers CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: Guessing with little data\n\nSpeaker:\n Man uel Kauers\n\nAffiliation:\n Johannes Kepler University\n\nZoom:\n Please email Emma Watson\n\nABSTRACT:\n\nA popular and powerful technique in exp erimental mathematics takes as\ninput the first few terms of an infinite s equence and returns\nplausible candidates for recurrence equations that th e sequence may\nsatisfy. In a way\, the search for such candidates is a ge neralization\nof polynomial interpolation. For polynomial interpolation\, it is well\nknown and easy to see that d+1 sample points are needed in ord er to\nrecover a polynomial of degree d. Similarly\, it turns out that\n(r +1)*(d+2) consecutive terms of a sequence are needed in order to\ndetect a linear recurrence of order r with polynomial coefficients of\ndegree at m ost d.\n DTSTAMP:20250524T175615Z END:VEVENT END:VCALENDAR