BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20210314T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20201101T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:68326d84b0c87 DTSTART;TZID=America/Toronto:20210610T160000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20210610T160000 URL:/combinatorics-and-optimization/events/joint-colloq uium-shayla-redlin SUMMARY:Joint Colloquium - Shayla Redlin CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: Counting Antichains in the Boolean Lattice\ n\nSpeaker:\n Shayla Redlin\n\nAffiliation:\n University of À¶Ý®ÊÓÆµ\n\nZo om:\n Contact Maxwell Levit\n\nABSTRACT:\n\nHow many antichains are there in the Boolean lattice P(n)? Sperner's\ntheorem (1928) tells us that the l argest antichain in P(n) has size A\n= (n choose n/2). A subset of an anti chain is an antichain\, so there\nare at least 2^A antichains in P(n). Int erestingly\, it turns out that\nthis is close to the total\, as Kleitman ( 1969) showed that the number\nof antichains is 2^(A(1+x)) where x goes to zero as n goes to\ninfinity.\n DTSTAMP:20250525T010820Z END:VEVENT END:VCALENDAR