BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20210314T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20201101T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:68d2026249d53 DTSTART;TZID=America/Toronto:20210325T130000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20210325T130000 URL:/combinatorics-and-optimization/events/algebraic-co mbinatorics-seminar-colleen-robichaux SUMMARY:Algebraic Combinatorics Seminar - Colleen Robichaux CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE:聽An Efficient Algorithm for Deciding the Van ishing of Schubert\nPolynomial Coefficients\n\nSpeaker:\n Colleen Robichau x\n\nAffiliation:\n University of Illinois at Urbana-Champaign\n\nZoom:\n Contact Karen Yeats\n\nABSTRACT:\n\n聽Schubert polynomials form a basis of all polynomials and appear in\nthe study of cohomology rings of flag mani folds. The vanishing problem\nfor Schubert polynomials asks if a coefficie nt of a Schubert\npolynomial is zero. We give a tableau criterion to solve this problem\,\nfrom which we deduce the first polynomial time algorithm. These\nresults are obtained from new characterizations of the Schubitope\ , a\ngeneralization of the permutahedron defined for any subset of the n x \nn grid. In contrast\, we show that computing these coefficients\nexplici tly is #P-complete. This is joint work with Anshul Adve and\nAlexander Yon g.\n DTSTAMP:20250923T021354Z END:VEVENT END:VCALENDAR