BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//Drupal iCal API//EN
X-WR-CALNAME:Events items teaser
X-WR-TIMEZONE:America/Toronto
BEGIN:VTIMEZONE
TZID:America/Toronto
X-LIC-LOCATION:America/Toronto
BEGIN:DAYLIGHT
TZNAME:EDT
TZOFFSETFROM:-0500
TZOFFSETTO:-0400
DTSTART:20210314T070000
END:DAYLIGHT
BEGIN:STANDARD
TZNAME:EST
TZOFFSETFROM:-0400
TZOFFSETTO:-0500
DTSTART:20201101T060000
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
UID:68d2026249d53
DTSTART;TZID=America/Toronto:20210325T130000
SEQUENCE:0
TRANSP:TRANSPARENT
DTEND;TZID=America/Toronto:20210325T130000
URL:/combinatorics-and-optimization/events/algebraic-co
mbinatorics-seminar-colleen-robichaux
SUMMARY:Algebraic Combinatorics Seminar - Colleen Robichaux
CLASS:PUBLIC
DESCRIPTION:Summary \n\nTITLE:聽An Efficient Algorithm for Deciding the Van
ishing of Schubert\nPolynomial Coefficients\n\nSpeaker:\n Colleen Robichau
x\n\nAffiliation:\n University of Illinois at Urbana-Champaign\n\nZoom:\n
Contact Karen Yeats\n\nABSTRACT:\n\n聽Schubert polynomials form a basis of
all polynomials and appear in\nthe study of cohomology rings of flag mani
folds. The vanishing problem\nfor Schubert polynomials asks if a coefficie
nt of a Schubert\npolynomial is zero. We give a tableau criterion to solve
this problem\,\nfrom which we deduce the first polynomial time algorithm.
These\nresults are obtained from new characterizations of the Schubitope\
, a\ngeneralization of the permutahedron defined for any subset of the n x
\nn grid. In contrast\, we show that computing these coefficients\nexplici
tly is #P-complete. This is joint work with Anshul Adve and\nAlexander Yon
g.\n
DTSTAMP:20250923T021354Z
END:VEVENT
END:VCALENDAR