BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20200308T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20191103T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:682e540eb91fa DTSTART;TZID=America/Toronto:20200914T113000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20200914T113000 URL:/combinatorics-and-optimization/events/algebraic-gr aph-theory-seminar-andriaherimanana-sarobidy SUMMARY:Algebraic Graph Theory Seminar - Andriaherimanana Sarobidy\nRazafim ahatratra & Mahsa Nasrollahi Shirazi CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: Extensions of the Erdős-Ko-Rado theorem to 2-intersecting\nperfect matchings and 2-intersecting permutations\n\nSpea kers:\n Andriaherimanana Sarobidy Razafimahatratra & Mahsa Nasrollahi\nShi razi\n\nAffiliation:\n University of Regina\n\nZoom:\n Contact Soffia Arna dottir\n\nABSTRACT:\n\nThe Erdős-Ko-Rado (EKR) theorem is a classical res ult in extremal\ncombinatorics. It states that if n and k are such that $n \\geq 2k$\,\nthen any intersecting family F of k-subsets of [n] = {1\,2\,. ..\,n} has\nsize at most $\\binom{n-1}{k-1}$. Moreover\, if n>2k\, then eq uality\nholds if and only if F is a canonical intersecting family\; that i s\,\n$\\bigcap_{A\\in F}A = \\{i\\}$\, for some i in [n].\n DTSTAMP:20250521T223038Z END:VEVENT END:VCALENDAR