BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20200308T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20191103T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:682e54442f32e DTSTART;TZID=America/Toronto:20200703T153000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20200703T153000 URL:/combinatorics-and-optimization/events/tutte-colloq uium-peter-selinger SUMMARY:Tutte Colloquium - Peter Selinger CLASS:PUBLIC DESCRIPTION:Summary \n\nTITLE: Number-theoretic methods in quantum computi ng\n\nSpeaker:\n Peter Selinger\n\nAffiliation:\n Dalhousie University\n\n Zoom:\n Please email Emma Watson\n\nABSTRACT:\n\nAn important problem in quantum computing is the so-called\n\\emph{approximate synthesis problem}: to find a quantum circuit\,\npreferably as short as possible\, that appro ximates a given target\noperation up to given $\\epsilon$. For nearly two decades\, from 1995 to\n2012\, the standard solution to this problem was t he Solovay-Kitaev\nalgorithm\, which is based on geometric ideas. This alg orithm produces\ncircuits of size $O(\\log^c(1/\\epsilon))$\, where $c$ is a constant\napproximately equal to $3.97$. It was a long-standing open pr oblem\nwhether the exponent $c$ could be reduced to $1$.\n DTSTAMP:20250521T223132Z END:VEVENT END:VCALENDAR