Algebraic Graph Theory Seminar - Bill Martin

Monday, March 7, 2022 11:30 pm - 11:30 pm EST (GMT -05:00)

Title:聽Polynomial ideals, association schemes, and the Q-polynomial property

Speaker: Bill Martin
Afiliation: Worcester Polytechnic Institute
Zoom: Contact Sabrina Lato

Abstract:

Let X 鈯 S^{m鈭1} be a spherical code in C^m. We study the ideal I 鈯 C[z_1, . . . , z_m] of polynomials that vanish on the points of X: I = { F(z) | (鈭a 鈭 X) (F(a) = 0) }. The primary example of interest is where the Gram matrix of X is proportional to the first idempotent in some Q-polynomial ordering of an association scheme (X, R) defined on X. We will discuss examples ranging from the Leech lattice to posets to Paley graphs. I will present two 鈥渄ual girth鈥 parameters 纬_1(X) and 纬_2(X); I conjecture that, except when (X, R) is the association scheme of a polygon, 纬_2(X) 鈮 6. I see this as dual to a conjecture about the fundamental group of a distance-regular graph.