BEGIN:VCALENDAR VERSION:2.0 PRODID:-//Drupal iCal API//EN X-WR-CALNAME:Events items teaser X-WR-TIMEZONE:America/Toronto BEGIN:VTIMEZONE TZID:America/Toronto X-LIC-LOCATION:America/Toronto BEGIN:DAYLIGHT TZNAME:EDT TZOFFSETFROM:-0500 TZOFFSETTO:-0400 DTSTART:20240310T070000 END:DAYLIGHT BEGIN:STANDARD TZNAME:EST TZOFFSETFROM:-0400 TZOFFSETTO:-0500 DTSTART:20241103T060000 END:STANDARD END:VTIMEZONE BEGIN:VEVENT UID:684e6f1484870 DTSTART;TZID=America/Toronto:20250306T153000 SEQUENCE:0 TRANSP:TRANSPARENT DTEND;TZID=America/Toronto:20250306T170000 URL:/centre-for-theoretical-neuroscience/events/ctn-sem inar-eva-dyer SUMMARY:CTN Seminar Eva Dyer CLASS:PUBLIC DESCRIPTION:Summary \n\nProf. Eva Dyer (home page\n[https://bme.gatech.edu/ bme/faculty/Eva-Dyer]) will present on her\nwork on Thursday\, March 6\, 3 :30 p.m. in E5 2004.\n\nScaling Up Neural Data Pretraining to Uncover Shar ed Structure in\nBrain Function\n\nThe brain is incredibly complex\, with diverse functions that emerge\nfrom the coordinated activity of billions o f neurons. These functions\nvary across brain regions and adapt dynamicall y as we engage in\ndifferent tasks\, process sensory information\, or gene rate behavior.\nYet\, each neural recording captures only a small glimpse of this\nimmense complexity\, offering a limited view of the broader syste m.\nThis motivates the need for an algorithmic approach to stitch together \ndiverse datasets\, integrating neural activity across brain regions\,\nc ell types\, and individuals. In this talk\, I will present our work on\nbu ilding scalable models pretrained on a broad corpus of neural\nrecordings. Our findings demonstrate positive transfer across tasks\,\ncell types\, a nd individuals\, effectively bridging gaps between\nisolated studies. This unified framework opens new possibilities for\nneural decoding\, brain-ma chine interfaces\, and cross-species\nneuroscience\, offering a path towar d more generalizable models of\nbrain function.\n DTSTAMP:20250615T065828Z END:VEVENT END:VCALENDAR