Cancer

Learn how CBB researchers are tackling Cancer:

CBB Researchers

Stories

Press/Media

  • "Mathematicians set sights on cancer therapy," , Mohammad Kohandel and Sivabal Sivaloganathan, January 19, 2018
  • "Image-based models of solid tumors behaviour in diagnosis, treatment, prediction," , , December 1, 2016
  • "A tissue mechanist found in translation," , Thomas Willett, November 19, 2015
  • "Nanomedicines - The Way of the future?" , Emmanuel Ho, January 21, 2015
  • "BIG Data, medical imaging, and machine intelligence," , Hamid Tizhoosh, January 21, 2015
  • "Medical imaging: pixels, consensus, and learning," , Hamid Tizhoosh, October 1, 2014
  • "Integrative systems for biomedical imaging and analysis," , Alex Wong, October 1, 2014
  • "An engineering prospective on cancer," , Adil Al-Mayah, September 30, 2014
  • "Model-based design in synthetic biology," , Brian Ingalls, September 30, 2014
  • "Bending the cost curve: Building a $1000 diagnostic x-ray imager for scalable and sustainable healthcare," , Karim Karim, September 30, 2014

Publications by CBB Researchers

  • Moradian S, Krzyzanowska MK, Maguire R, Morita PP, Kukreti V, Avery J, Liu G, Cafazzo J, Howell D. . JMIR Cancer 2018;4(2):e10932
  • Al-Mayah, A., Moseley, J., Hunter, S., & Brock, K. (2015). Radiation dose response simulation for biomechanical-based deformable image registration of head and neck cancer treatment.

  • Mohamed, A. S., Wong, A. J., Fuller, C. D., Kamal, M., Gunn, G. B., Phan, J., ... & Quinlan-Davidson, S. R. (2017). Patterns of locoregional failure following post-operative intensity-modulated radiotherapy to oral cavity cancer: quantitative spatial and dosimetric analysis using a deformable image registration workflow.

  • Shafiee, M. J., Chung, A. G., Khalvati, F., Haider, M. A., & Wong, A. (2017). Discovery radiomics via evolutionary deep radiomic sequencer discovery for pathologically proven lung cancer detection.
  • Shafiee, M. J., & Wong, A. (2017). Discovery Radiomics via Deep Multi-Column Radiomic Sequencers for Skin Cancer Detection.
  • Cho, D. S., Khalvati, F., Clausi, D. A., & Wong, A. (2017, July). A Machine Learning-Driven Approach to Computational Physiological Modeling of Skin Cancer.
  • Karimi, A. H., Chung, A. G., Shafiee, M. J., Khalvati, F., Haider, M. A., Ghodsi, A., & Wong, A. (2017, July). Discovery radiomics via a mixture of deep convnet sequencers for multi-parametric MRI prostate cancer classification.
  • Kumar, D., Chung, A. G., Shaifee, M. J., Khalvati, F., Haider, M. A., & Wong, A. (2017, July). Discovery radiomics for pathologically-proven computed tomography lung cancer prediction.
  • Khalvati, F., Haider, M. A., Ghodsi, A., & Wong, A. (2017, June). Discovery Radiomics via a Mixture of Deep ConvNet Sequencers for Multi-parametric MRI Prostate Cancer Classification.
  • Cho, D. S., Khalvati, F., Clausi, D. A., & Wong, A. (2017, July). A Machine Learning-Driven Approach to Computational Physiological Modeling of Skin Cancer.
  • Zhang, Y., Oikonomou, A., Wong, A., Haider, M. A., & Khalvati, F. (2017). Radiomics-based prognosis analysis for non-small cell lung cancer.
  • Khalvati, F., Zhang, J., Wong, A., & Haider, M. A. (2016, December). Bag of Bags: Nested Multi Instance Classification for Prostate Cancer Detection.
  • Mooney, S. M., Talebian, V., Jolly, M. K., Jia, D., Gromala, M., Levine, H., & McConkey, B. J. (2017). The GRHL2/ZEB feedback ǴDZ—a key axis in the regulation of EMT in breast cancer.
  • Seo, B. B., Jahed, Z., Coggan, J. A., Chau, Y. Y., Rogowski, J. L., Gu, F. X., ... & Tsui, T. Y. (2017). Mechanical Contact Characteristics of PC3 Human Prostate Cancer Cells on Complex-Shaped Silicon Micropillars.
  • Yang, S., Chen, D., Li, N., Xu, Q., Li, H., Gu, F., ... & Lu, J. (2016). Hollow mesoporous silica nanocarriers with multifunctional capping agents for in vivo cancer imaging and therapy.
  • Gangeh, M. J., Tizhoosh, H. R., Wu, K., Huang, D., Tadayyon, H., & Czarnota, G. J. (2017, February). Tumour ellipsification in ultrasound images for treatment prediction in breast cancer. .
  • Lu, M., Lu, Q. B., & Honek, J. F. (2017). Squarate-based carbocyclic nucleosides: Syntheses, computational analyses and anticancer/antiviral evaluation.
  • Malik, P., Phipps, C., Edginton, A., & Blay, J. (2017). Pharmacokinetic Considerations for Antibody-Drug Conjugates against Cancer.
  • Tulsieram, K. L., Arocha, J. F., & Lee, J. (2018). Readability and coherence of Department/Ministry of health HPV information.
  • Bizheva, K., Tan, B., Fisher, C. J., Mason, E., & Lilge, L. D. (2017, April). In-vivo imaging of the morphology and blood perfusion of brain tumours in rats with UHR-OCT.
  • Asgari, H., Soltani, M., & Sefidgar, M. (2018). Modeling of FMISO [F 18] nanoparticle PET tracer in normal-cancerous tissue based on real clinical image.
  • Forouzannia, F., Enderling, H., & Kohandel, M. (2018). Mathematical Modeling of the Effects of Tumor Heterogeneity on the Efficiency of Radiation Treatment Schedule.
  • Mahdipour-Shirayeh, A., Kaveh, K., Kohandel, M., & Sivaloganathan, S. (2017). Phenotypic heterogeneity in modeling cancer evolution.
  • Goldman, A., Kohandel, M., & Clairambault, J. (2017). Integrating Biological and Mathematical Models to Explain and Overcome Drug Resistance in Cancer, Part 2: From Theoretical Biology to Mathematical Models.
  • Goldman, A., Kohandel, M., & Clairambault, J. (2017). ntegrating Biological and Mathematical Models to Explain and Overcome Drug Resistance in Cancer,Part 1: Biological Facts and Studies in Drug Resistance.
  • Manem, V. S., Kohandel, M., Hodgson, D. C., & Sivaloganathan, S. (2017). Predictive modeling of therapy induced secondary thyroid malignancies in childhood cancer survivors.
  • Tonekaboni, S. A. M., Dhawan, A., & Kohandel, M. (2017). Mathematical modelling of plasticity and phenotype switching in cancer cell populations.
  • Manem, V. S., Kohandel, M., Hodgson, D. C., & Sivaloganathan, S. (2017). Predictive modeling of therapy induced secondary thyroid malignancies in childhood cancer survivors.
  • Mahdipour-Shirayeh, A., Kaveh, K., Kohandel, M., & Sivaloganathan, S. (2017). Phenotypic heterogeneity in modeling cancer evolution.
  • Forouzannia, F., & Sivaloganathan, S. (2017). Cancer Stem Cells, the Tipping Point: Minority Rules?.
  • Gelband, H., Horton, S., Watkins, D., Jamison, D. T., Wu, D., Gospodarowicz, M., & Jha, P. (2018). Disease Control Priorities: cancer package principles and overview.
  • ܱԳٱ‐A, S., Bhakta, N., Vasquez, R. F., Gupta, S., & Horton, S. E. (2018). The cost and Dz‐eڴڱ𳦳پԱ of childhood cancer treatment in El Salvador, Central America: A report from the Childhood Cancer 2030 Network.
  • Fuentes-Alabi, S., Vasquez, R. F., Bhakta, N., Rodriguez-Galindo, C., Frazier, A. L., Atun, R., ... & Horton, S. (2017). Cost and Cost-Effectiveness of Childhood Cancer Treatment in El Salvador: A Collaborative Budget Model.
  • Burke, M. V., Atkins, A., Akens, M., Willett, T. L., & Whyne, C. M. (2016). Osteolytic and mixed cancer metastasis modulates collagen and mineral parameters within rat vertebral bone matrix.